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Surprising obtention of an enantiopure eight-membered cyclic
ether from camphor
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Abstract—A highly-functionalized eight-membered cyclic ether, with an additional interesting trans-fusion to a cyclobutane ring, is
enantiospecifically obtained in high yield from a camphor-derived di(spiroepoxide)-substituted 1-norbornyl triflate, via a regio- and
stereocontrolled domino process. The described process could constitute a novel model procedure for the preparation of eight-mem-
bered cyclic ethers from a,a 0-bis(spiroepoxide) cyclopentyl derivatives.
� 2007 Elsevier Ltd. All rights reserved.
Polyfunctionalized medium-sized cyclic ethers are com-
mon structural features of a wide range of biologi-
cally-active marine natural products, such as the well-
known strong toxins brevetoxins and ciguatoxins (e.g.,
1 in Fig. 1).1 Among those, eight-membered cyclic ethers
are distinctive constituents of marine products, such as
the interesting ones produced by the red algae of the
genus Laurencia (e.g., 2 in Fig. 1), whose abundance
and structural features have allowed their classification
in two subclasses, the lauthisan type and the laureane
one, in view of a common biogenetic origin.2

The biological interest and structural complexity of mar-
ine medium-sized cyclic ethers have made these com-
pounds to be the subject of a significant synthetic
effort within the last decade. In this sense, the work car-
ried out by authors as Masamune, Kocienski, Overman,
Nicolaou, Schreiber, Moody, Kotsuki, Hirama or
Paquette, among others, must be emphasized.3 These
synthetic efforts have been mainly focused on the con-
struction of eight-membered cycles, due to their special
synthetic difficulties, arising from conformational entro-
py factors and developing transannular repulsions as the
ring is formed from acyclic precursors.4
0040-4039/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.tetlet.2007.05.154

* Corresponding authors. E-mail: santmoya@quim.ucm.es
So far, many approaches to eight-membered cyclic
ethers,5 mainly involving condensations,5a–d rearrange-
ments,5e,f ring-expansions,5g–i radical cyclizations,5j or,
more recently, ring-closing metatheses,5k–o have been
developed. Nevertheless, problems related with precur-
sor preparations, overall yields, general scope, and stereo-
selectivity (carbohydrates are standard chiral starting
materials for stereoselective preparations),6 still keep
alive the interest in developing new approaches to such
interesting medium-sized cyclic ethers.

Continuing with our preliminary studies on the solvoly-
sis of spiroepoxide 1-norbornyl triflates,7 we have seren-
dipity discovered a regio- and stereocontrolled domino
process from camphor-derived bis(spiroepoxide) 1-nor-
bornyl triflate 3 to the interesting cyclobutane-fused8

eight-membered cyclic ether 4 (Scheme 1).9 The reaction
was carried out under the standard conditions used
previously for the solvolysis of related triflates (i.e.,
refluxing aqueous ethanol buffered with triethyl-
amine).7,10 The obtained result has an important syn-
thetic interest, since it constitutes the first example for
the stereoselective construction of a highly-functional-
ized eight-membered cyclic ether from a chiral terpene.
In this sense, it could be used as synthetic model for
the construction of enantiopure eight-membered cyclic
ethers.
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Bis(spiroepoxide) 1-norbornyl triflate 3 was obtained
from camphor, together with epi-3,11 as shown in
Scheme 2. Key dimethylene 1-norbornyl triflate 5 was
prepared from (+)-camphor in four steps (58% yield)
as described previously,12 and submitted to epoxidation
with m-CPBA (meta-chloroperbenzoic acid) under the
same conditions (refluxing CH2Cl2) used previously for
related methylene 1-norbornyl triflates.7

From a mechanistic point of view, formation of an oxa-
bicyclo[6.2.0]decane, such as the eight-membered cyclic
ether 4, by the solvolysis of a 1-norbornyl triflate is un-
known.13 This unprecedented result can be explained
according to the coincidence of a series of key structural
factors in reacting triflate 3, which makes possible the
amazing domino process shown in Scheme 3.

After initial ionization,14 the formed 1-norbornyl cation
6 should undergo an epoxide-based pinacol-type rear-
rangement of its C2–C7 bond,15 to generate hydroxy
epoxide 7 after hydrolysis. The special conformational
restriction of 7,16 as well as an adequate disposition of
its epoxidic ring, makes possible a highly efficient
6-exo-tet hydroxy-epoxide cyclization,17 to generate
tricyclic b-hydroxy ketone 8, which should undergo a
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favored retro-aldol reaction (note strain releasing) to
bicyclic enol 9.18 Final keto–enol equilibration of 9 with
its more-stable trans-fused tautomer explains the detec-
tion of 4 as the unique solvolysis final product.

Geometry factors are really crucial in this reaction.
Thus, solvolysis of epi-3, under the same reaction condi-
tions that those used for 3 (see Scheme 1), gives place to
bicyclo[2.1.1]heptane-based ketone 1019 (Fig. 2), via the
expected pinacol-type rearrangement of its C2–C3
bond.20,21

From a synthetic point of view, the discovered process
could constitute a useful synthetic methodology for
planning the preparation of b,b 0-dioxooxocanes (note
the synthetic utility of the carbonyl groups for possible
subsequent functionalizations) from a,a 0-bis(spiroepox-
ide) cyclopentyl-carbocation precursors, as retrosyn-
thetic Scheme 4 shows.
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In conclusion, the stereocontrolled formation of a
highly-functionalized and synthetically-interesting
eight-membered cyclic ether from an enantiopure cam-
phor-derived bis(spiroepoxide) 1-norbornyl triflate is
described. It constitutes the first example for the con-
struction of such valuable rings from a chiral terpene.
In relation to the last, the described process could con-
stitute a novel model procedure for the preparation of
eight-membered cyclic ethers.
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Ravelo, J. L.; Martı́n, J. D. Chem. Rev. 1995, 95, 1953.

4. (a) Rhee, H. J.; Beom, H. Y.; Kim, H.-D. Tetrahedron
Lett. 2004, 45, 8019; (b) Linderman, R. J.; Siedlecki, J.;
O’Neill, S.; Sun, H. J. Am. Chem. Soc. 1997, 119, 6919,
and references cited therein; (c) Kreiter, C. G.; Lehr, K.;
Leyendecker, M.; Sheldrik, W. S.; Exner, R. Chem. Ber.
1991, 124, 3; (d) Iluminati, G.; Mandolini, L. Acc. Chem.
Res. 1981, 14, 102.

5. For instance see: (a) Sugimoto, M.; Suzuki, T.; Hagiwara,
H.; Hoshi, T. Tetrahedron Lett. 2007, 48, 1109; (b) Kim,
H.; Choi, W. J.; Jung, W. J.; Kim, S.; Kim, D. J. Am.
Chem. Soc. 2003, 125, 10238; (c) Nicolaou, K. C.; Yang,
Z.; Shi, G.-Q.; Gunzner, J. L.; Agrios, K. A.; Gärtner, P.
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